\(\int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx\) [27]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 552 \[ \int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx=-\frac {15 a \cot (c+d x)}{8 d \left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {a+a \csc (c+d x)}}-\frac {3 a \cos (c+d x)}{4 d \sqrt [3]{\csc (c+d x)} \sqrt {a+a \csc (c+d x)}}-\frac {15 a \cos (c+d x) \csc ^{\frac {2}{3}}(c+d x)}{8 d \sqrt {a+a \csc (c+d x)}}+\frac {15 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {1+\sqrt [3]{\csc (c+d x)}+\csc ^{\frac {2}{3}}(c+d x)}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}-\sqrt [3]{\csc (c+d x)}}{1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}}\right )|-7-4 \sqrt {3}\right )}{16 d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} (a-a \csc (c+d x)) \sqrt {a+a \csc (c+d x)}}-\frac {5\ 3^{3/4} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {1+\sqrt [3]{\csc (c+d x)}+\csc ^{\frac {2}{3}}(c+d x)}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}-\sqrt [3]{\csc (c+d x)}}{1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}}\right ),-7-4 \sqrt {3}\right )}{4 \sqrt {2} d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} (a-a \csc (c+d x)) \sqrt {a+a \csc (c+d x)}} \]

[Out]

-3/4*a*cos(d*x+c)/d/csc(d*x+c)^(1/3)/(a+a*csc(d*x+c))^(1/2)-15/8*a*cos(d*x+c)*csc(d*x+c)^(2/3)/d/(a+a*csc(d*x+
c))^(1/2)-15/8*a*cot(d*x+c)/d/(1-csc(d*x+c)^(1/3)+3^(1/2))/(a+a*csc(d*x+c))^(1/2)-5/8*3^(3/4)*a^2*cot(d*x+c)*(
1-csc(d*x+c)^(1/3))*EllipticF((1-csc(d*x+c)^(1/3)-3^(1/2))/(1-csc(d*x+c)^(1/3)+3^(1/2)),I*3^(1/2)+2*I)*2^(1/2)
*((1+csc(d*x+c)^(1/3)+csc(d*x+c)^(2/3))/(1-csc(d*x+c)^(1/3)+3^(1/2))^2)^(1/2)/d/(a-a*csc(d*x+c))/(a+a*csc(d*x+
c))^(1/2)/((1-csc(d*x+c)^(1/3))/(1-csc(d*x+c)^(1/3)+3^(1/2))^2)^(1/2)+15/16*3^(1/4)*a^2*cot(d*x+c)*(1-csc(d*x+
c)^(1/3))*EllipticE((1-csc(d*x+c)^(1/3)-3^(1/2))/(1-csc(d*x+c)^(1/3)+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/2*
2^(1/2))*((1+csc(d*x+c)^(1/3)+csc(d*x+c)^(2/3))/(1-csc(d*x+c)^(1/3)+3^(1/2))^2)^(1/2)/d/(a-a*csc(d*x+c))/(a+a*
csc(d*x+c))^(1/2)/((1-csc(d*x+c)^(1/3))/(1-csc(d*x+c)^(1/3)+3^(1/2))^2)^(1/2)

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 552, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3891, 53, 65, 309, 224, 1891} \[ \int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx=-\frac {5\ 3^{3/4} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {\csc ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\csc (c+d x)}+1}{\left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{\csc (c+d x)}-\sqrt {3}+1}{-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{4 \sqrt {2} d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right )^2}} (a-a \csc (c+d x)) \sqrt {a \csc (c+d x)+a}}+\frac {15 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {\csc ^{\frac {2}{3}}(c+d x)+\sqrt [3]{\csc (c+d x)}+1}{\left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-\sqrt [3]{\csc (c+d x)}-\sqrt {3}+1}{-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{16 d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right )^2}} (a-a \csc (c+d x)) \sqrt {a \csc (c+d x)+a}}-\frac {15 a \cos (c+d x) \csc ^{\frac {2}{3}}(c+d x)}{8 d \sqrt {a \csc (c+d x)+a}}-\frac {3 a \cos (c+d x)}{4 d \sqrt [3]{\csc (c+d x)} \sqrt {a \csc (c+d x)+a}}-\frac {15 a \cot (c+d x)}{8 d \left (-\sqrt [3]{\csc (c+d x)}+\sqrt {3}+1\right ) \sqrt {a \csc (c+d x)+a}} \]

[In]

Int[Sqrt[a + a*Csc[c + d*x]]/Csc[c + d*x]^(4/3),x]

[Out]

(-15*a*Cot[c + d*x])/(8*d*(1 + Sqrt[3] - Csc[c + d*x]^(1/3))*Sqrt[a + a*Csc[c + d*x]]) - (3*a*Cos[c + d*x])/(4
*d*Csc[c + d*x]^(1/3)*Sqrt[a + a*Csc[c + d*x]]) - (15*a*Cos[c + d*x]*Csc[c + d*x]^(2/3))/(8*d*Sqrt[a + a*Csc[c
 + d*x]]) + (15*3^(1/4)*Sqrt[2 - Sqrt[3]]*a^2*Cot[c + d*x]*(1 - Csc[c + d*x]^(1/3))*Sqrt[(1 + Csc[c + d*x]^(1/
3) + Csc[c + d*x]^(2/3))/(1 + Sqrt[3] - Csc[c + d*x]^(1/3))^2]*EllipticE[ArcSin[(1 - Sqrt[3] - Csc[c + d*x]^(1
/3))/(1 + Sqrt[3] - Csc[c + d*x]^(1/3))], -7 - 4*Sqrt[3]])/(16*d*Sqrt[(1 - Csc[c + d*x]^(1/3))/(1 + Sqrt[3] -
Csc[c + d*x]^(1/3))^2]*(a - a*Csc[c + d*x])*Sqrt[a + a*Csc[c + d*x]]) - (5*3^(3/4)*a^2*Cot[c + d*x]*(1 - Csc[c
 + d*x]^(1/3))*Sqrt[(1 + Csc[c + d*x]^(1/3) + Csc[c + d*x]^(2/3))/(1 + Sqrt[3] - Csc[c + d*x]^(1/3))^2]*Ellipt
icF[ArcSin[(1 - Sqrt[3] - Csc[c + d*x]^(1/3))/(1 + Sqrt[3] - Csc[c + d*x]^(1/3))], -7 - 4*Sqrt[3]])/(4*Sqrt[2]
*d*Sqrt[(1 - Csc[c + d*x]^(1/3))/(1 + Sqrt[3] - Csc[c + d*x]^(1/3))^2]*(a - a*Csc[c + d*x])*Sqrt[a + a*Csc[c +
 d*x]])

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 309

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 - Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rule 3891

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[a^2*d*(
Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])), Subst[Int[(d*x)^(n - 1)/Sqrt[a - b*x], x]
, x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (a^2 \cot (c+d x)\right ) \text {Subst}\left (\int \frac {1}{x^{7/3} \sqrt {a-a x}} \, dx,x,\csc (c+d x)\right )}{d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}} \\ & = -\frac {3 a \cos (c+d x)}{4 d \sqrt [3]{\csc (c+d x)} \sqrt {a+a \csc (c+d x)}}+\frac {\left (5 a^2 \cot (c+d x)\right ) \text {Subst}\left (\int \frac {1}{x^{4/3} \sqrt {a-a x}} \, dx,x,\csc (c+d x)\right )}{8 d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}} \\ & = -\frac {3 a \cos (c+d x)}{4 d \sqrt [3]{\csc (c+d x)} \sqrt {a+a \csc (c+d x)}}-\frac {15 a \cos (c+d x) \csc ^{\frac {2}{3}}(c+d x)}{8 d \sqrt {a+a \csc (c+d x)}}-\frac {\left (5 a^2 \cot (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt [3]{x} \sqrt {a-a x}} \, dx,x,\csc (c+d x)\right )}{16 d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}} \\ & = -\frac {3 a \cos (c+d x)}{4 d \sqrt [3]{\csc (c+d x)} \sqrt {a+a \csc (c+d x)}}-\frac {15 a \cos (c+d x) \csc ^{\frac {2}{3}}(c+d x)}{8 d \sqrt {a+a \csc (c+d x)}}-\frac {\left (15 a^2 \cot (c+d x)\right ) \text {Subst}\left (\int \frac {x}{\sqrt {a-a x^3}} \, dx,x,\sqrt [3]{\csc (c+d x)}\right )}{16 d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}} \\ & = -\frac {3 a \cos (c+d x)}{4 d \sqrt [3]{\csc (c+d x)} \sqrt {a+a \csc (c+d x)}}-\frac {15 a \cos (c+d x) \csc ^{\frac {2}{3}}(c+d x)}{8 d \sqrt {a+a \csc (c+d x)}}+\frac {\left (15 a^2 \cot (c+d x)\right ) \text {Subst}\left (\int \frac {1-\sqrt {3}-x}{\sqrt {a-a x^3}} \, dx,x,\sqrt [3]{\csc (c+d x)}\right )}{16 d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}}-\frac {\left (15 \left (1-\sqrt {3}\right ) a^2 \cot (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a-a x^3}} \, dx,x,\sqrt [3]{\csc (c+d x)}\right )}{16 d \sqrt {a-a \csc (c+d x)} \sqrt {a+a \csc (c+d x)}} \\ & = -\frac {15 a \cot (c+d x)}{8 d \left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {a+a \csc (c+d x)}}-\frac {3 a \cos (c+d x)}{4 d \sqrt [3]{\csc (c+d x)} \sqrt {a+a \csc (c+d x)}}-\frac {15 a \cos (c+d x) \csc ^{\frac {2}{3}}(c+d x)}{8 d \sqrt {a+a \csc (c+d x)}}+\frac {15 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {1+\sqrt [3]{\csc (c+d x)}+\csc ^{\frac {2}{3}}(c+d x)}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}-\sqrt [3]{\csc (c+d x)}}{1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}}\right )|-7-4 \sqrt {3}\right )}{16 d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} (a-a \csc (c+d x)) \sqrt {a+a \csc (c+d x)}}-\frac {5\ 3^{3/4} a^2 \cot (c+d x) \left (1-\sqrt [3]{\csc (c+d x)}\right ) \sqrt {\frac {1+\sqrt [3]{\csc (c+d x)}+\csc ^{\frac {2}{3}}(c+d x)}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}-\sqrt [3]{\csc (c+d x)}}{1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}}\right ),-7-4 \sqrt {3}\right )}{4 \sqrt {2} d \sqrt {\frac {1-\sqrt [3]{\csc (c+d x)}}{\left (1+\sqrt {3}-\sqrt [3]{\csc (c+d x)}\right )^2}} (a-a \csc (c+d x)) \sqrt {a+a \csc (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 15.88 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.13 \[ \int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx=-\frac {a \cos (c+d x) \left (3+5 \csc ^{\frac {4}{3}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {4}{3},\frac {3}{2},1-\csc (c+d x)\right )\right )}{4 d \sqrt [3]{\csc (c+d x)} \sqrt {a (1+\csc (c+d x))}} \]

[In]

Integrate[Sqrt[a + a*Csc[c + d*x]]/Csc[c + d*x]^(4/3),x]

[Out]

-1/4*(a*Cos[c + d*x]*(3 + 5*Csc[c + d*x]^(4/3)*Hypergeometric2F1[1/2, 4/3, 3/2, 1 - Csc[c + d*x]]))/(d*Csc[c +
 d*x]^(1/3)*Sqrt[a*(1 + Csc[c + d*x])])

Maple [F]

\[\int \frac {\sqrt {a +a \csc \left (d x +c \right )}}{\csc \left (d x +c \right )^{\frac {4}{3}}}d x\]

[In]

int((a+a*csc(d*x+c))^(1/2)/csc(d*x+c)^(4/3),x)

[Out]

int((a+a*csc(d*x+c))^(1/2)/csc(d*x+c)^(4/3),x)

Fricas [F]

\[ \int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx=\int { \frac {\sqrt {a \csc \left (d x + c\right ) + a}}{\csc \left (d x + c\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate((a+a*csc(d*x+c))^(1/2)/csc(d*x+c)^(4/3),x, algorithm="fricas")

[Out]

integral(sqrt(a*csc(d*x + c) + a)/csc(d*x + c)^(4/3), x)

Sympy [F]

\[ \int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx=\int \frac {\sqrt {a \left (\csc {\left (c + d x \right )} + 1\right )}}{\csc ^{\frac {4}{3}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+a*csc(d*x+c))**(1/2)/csc(d*x+c)**(4/3),x)

[Out]

Integral(sqrt(a*(csc(c + d*x) + 1))/csc(c + d*x)**(4/3), x)

Maxima [F]

\[ \int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx=\int { \frac {\sqrt {a \csc \left (d x + c\right ) + a}}{\csc \left (d x + c\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate((a+a*csc(d*x+c))^(1/2)/csc(d*x+c)^(4/3),x, algorithm="maxima")

[Out]

integrate(sqrt(a*csc(d*x + c) + a)/csc(d*x + c)^(4/3), x)

Giac [F]

\[ \int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx=\int { \frac {\sqrt {a \csc \left (d x + c\right ) + a}}{\csc \left (d x + c\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate((a+a*csc(d*x+c))^(1/2)/csc(d*x+c)^(4/3),x, algorithm="giac")

[Out]

integrate(sqrt(a*csc(d*x + c) + a)/csc(d*x + c)^(4/3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \csc (c+d x)}}{\csc ^{\frac {4}{3}}(c+d x)} \, dx=\int \frac {\sqrt {a+\frac {a}{\sin \left (c+d\,x\right )}}}{{\left (\frac {1}{\sin \left (c+d\,x\right )}\right )}^{4/3}} \,d x \]

[In]

int((a + a/sin(c + d*x))^(1/2)/(1/sin(c + d*x))^(4/3),x)

[Out]

int((a + a/sin(c + d*x))^(1/2)/(1/sin(c + d*x))^(4/3), x)